

Date: 12-11-2024

 Dept. No.

Max. : 100 Marks

Time: 01:00 pm-04:00 pm

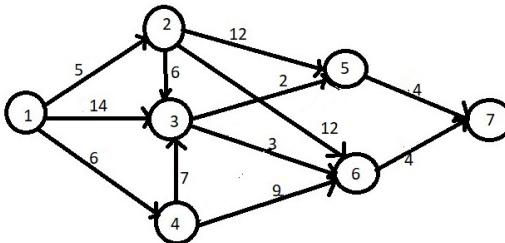
SECTION A – K1 (CO1)

	Answer ALL the questions	(5 x 1 = 5)
1	Answer the following	
a)	Define objective function.	
b)	Explain about under achievement and over achievement.	
c)	Name any two examples of dynamic programming problem.	
d)	Explain about Non-linear programming.	
e)	Give the advantages and disadvantages of greedy heuristic.	

SECTION A – K2 (CO1)

	Answer ALL the questions	(5 x 1 = 5)
2	MCQ	
a)	The study of effect of changes in parameters on the optimal solution is called i. sensitivity analysis ii. post-optimality analysis iii. both i and ii iv. none of these	
b)	Which of the following method prioritize the goals in the order of importance? i. Pre-emptive method ii. Two phase method iii. Simplex method iv. none	
c)	Which of the following is not a integer programming problem? i. Branch and bound method ii. Cutting plane method iii. Both i and ii iv. None of these	
d)	When was the Kuhn Tucker conditions first published? i. 1951 ii. 1952 iii. 1953 iv. 1954	
e)	The Greedy Heuristic are usually i. Single variable problem ii. Double variable problem iii. Multivariable problem iv. All the above	

SECTION B – K3 (CO2)


	Answer any THREE of the following	(3 x 10 = 30)
3	A patient consults a doctor to check his ill health. Doctor examines and advised him that he is having a deficiency of vitamin A and D. The doctor advises him to take vitamin A and D for a period to recover his health. He prescribes tonic X and Y which are having vitamin A and D in certain composition. Doctor tells the patient to consume atleast 40 units of A and 50 units of D daily. Costs of tonic and proportions of vitamins are given in the table. Apply graphical method to minimize the costs of tonics	

Vitamins	Tonic		Daily consumption
	X	Y	
A	2	4	40

	D	3	2	50	
	Cost in Rs	5	3		

4 A manufacturing company produces A and B each product must be processed through two department. Department 1 has 30 hours of production capacity per week and department 2 has 60 hours per week, each unit of product A requires 2 hours in department 1 and 6 hours in department 2. Each unit of product B requires 3 hours in dept 1 and 4 hours in dept 2. The management has set the following priorities P_1 : Minimize the underachievement of joint production of 10 units, P_2 : Minimize the underachievement of 7 units of product B, P_3 : Minimize the overachievement of 8 units of product A. Demonstrate the problem as goal programming problem.

5 The network below provides the possible routes between the starting city at node 1 and the destination city at node 7. The routes pass through intermediate cities designated by nodes 2 to 6.

Calculate the shortest route from city 1 to city 7.

6 Determine the value of x, y, z that maximize or minimize the function $f(x, y, z) = xy + 10x - x^2 - y^2 - z^2$.

7 Use random walk heuristic to solve the problem $\min F(x), x \in S = \{1, 2, \dots, 8\}$

x	1	2	3	4	5	6	7	8
$F(x)$	90	60	50	80	100	40	20	70

the random numbers are 0.4123, 0.2014, 0.0829, 0.5819, 0.3717.

SECTION C – K4 (CO3)

Answer any TWO of the following $(2 \times 12.5 = 25)$

8 Determine the optimum solution using simplex method $\max Z = 5x + 4y$, subject to the constraints $6x + 4y \leq 24$, $x + 2y \leq 6$, $-x + y \leq 1$, $y \leq 2$, $x, y \geq 0$.

9 a. Harrison Electric Produces two products popular with home renovators, old fashioned chandeliers and ceiling fans. Both chandeliers and fans require a two-step production process involving wiring and assembly. It takes about 2hrs to wire a chandelier and 3 hrs to wire a fan. Final assembly of the chandelier and fan require 6 and 5 hrs respectively. The production capability is such that only 12 hrs of wiring and 30 hrs of assembly time are available. Each chandelier produced nets the firm \$7 and each fan \$6. The Harrison's management wants to achieve the following goals with the given priorities: P_1 : Reach a profit as much above \$30 as possible, P_2 : Fully use wiring department hours available, P_3 : Avoid assembly department overtime, P_4 : Produce atleast 7 ceiling fans. Formulate and solve the above goal programming problem using graphical method.

b. Using dynamic programming estimate the shortest distance from city 1 to city 8

	2	3	4		5	6	7		8
1	20	35	17	2	18	7	11	5	9
				3	99	10	45	6	4
				4	28	24	13	7	12

(7+5.5)

10 Use lagrangian multipliers to estimate the optimal solution to $f = 2x^2 + y^2 + 3z^2 + 10x + 8y + 6z - 100$, subject to $x + y + z = 20$.

11 Solve the optimization problem using tabu search algorithm for the random numbers 0.915, 0.3118, 0.4129, 0.1816, 0.5001, 0.6814 $\min F(x), x \in S, S = \{1, 2, \dots, 8\}$

x	1	2	3	4	5	6	7	8
$F(x)$	90	60	50	80	100	40	30	70

SECTION D – K5 (CO4)

Answer any ONE of the following

(1 x 15 = 15)

1 2 a. TopAd, a new advertising agency with 10 employees, has received a contract to promote a new product. The agency can advertise by radio and television. The following table gives the number of people reached by each type of advertisement and the cost and labour requirements.

		Data/min advertisement	
		Radio	Television
Exposure (in millions of persons)	4	8	
Cost (in thousands of dollars)	8	24	
Assigned employees	1	2	

The contract prohibits TopAd from using more than 6 minutes of radio advertisement. Additionally, radio and television advertisements need to reach at least 45 million people. TopAd has a budget goal of \$100,000 for the project. TopAd's management assumes that the exposure goal is important than the budget goal. How many minutes of radio and television advertisement should TopAd use – Justify your answer using graphical method.

b. Determine the optimal solution for the discrete single variable problem using greedy search $\min F(x), x = S = [1, 2, \dots, 9]$

x	1	2	3	4	5	6	7
$F(x)$	100	80	50	40	70	70	20

(8+7)

1 3 Use branch and bound method to evaluate $\max Z = 5x + 4y$ subject to the constraints $x + y \leq 5, 10x + 6y \leq 45$, where x, y are nonnegative integers.

SECTION E – K6 (CO5)

Answer any ONE of the following

(1 x 20 = 20)

1 4 Evaluate the optimal solution of the following linear programming problem $\max Z = 40x + 30y$ subject to the constraints; $x + y \leq 12, 2x + y \leq 16$.

i. Applying the sensitivity analysis find the solution of the given linear programming problem, if the right-hand side vector $\begin{bmatrix} 12 \\ 16 \end{bmatrix}$ changes to $\begin{bmatrix} 15 \\ 17 \end{bmatrix}$.
ii. Also find out how far the new resource can be decreased.

1 5 Using Karush Kuhn Tucker condition formulate the optimal solution so as to $\max f = -x^2 - y^2 - z^2 + 4x + 6y$ subject to the constraints $x + y \leq 2, 2x + 3y \leq 12$ where $x, y \geq 0$.

\$\$\$\$\$\$\$\$\$\$\$\$